- DF Section 2.4 #9 #17 (Zorn’s lemma appears in Appendix 1), #18
- DF Section 3.1 #1, #12.
- Let F be any field. Show that there is a 1-1 homormophism from to $GL(n,F)$ given by the action of on the indices i in the standard basis . Combine this with Cayley’s theorem (page 120) to show that for every finite group G, there exists n, such that G is isomorphic to a subgroup of .
- Show algebraically that every isometry T of is a glide reflection provided it has the form $\latex T=T_\lambda A$, where $A\in O(2,R)$, $A\not\in SO(2,R)$, $\latex \lambda\ne 0$.
- Solve the following problems without submitting a solution
- DF Section 2.4 #15, #19

Advertisements
(function(g,$){if("undefined"!=typeof g.__ATA){
g.__ATA.initAd({collapseEmpty:'after', sectionId:26942, width:300, height:250});
g.__ATA.initAd({collapseEmpty:'after', sectionId:114160, width:300, height:250});
}})(window,jQuery);
var o = document.getElementById('crt-1435959323');
if ("undefined"!=typeof Criteo) {
var p = o.parentNode;
p.style.setProperty('display', 'inline-block', 'important');
o.style.setProperty('display', 'block', 'important');
Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-1435959323",collapseContainerIfNotAdblocked:true,"callifnotadblocked": function () {var o = document.getElementById('crt-1435959323'); o.style.setProperty('display','none','important');o.style.setProperty('visbility','hidden','important'); }
});
} else {
o.style.setProperty('display', 'none', 'important');
o.style.setProperty('visibility', 'hidden', 'important');
}